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This article is a continuation and expansion of previous work and demonstrates the
very satisfactory performance of a conceptual 34-m DSS-12 type HA-Dec antenna feed
system over the frequency range of 1 to 10 GHz. A seven-feedhorn baseline design is
developed which will allow Search for Extra-Terrestrial Intelligence (SETI) investigations
using each horn over a 1.4:1 frequency range. A gain/system noise temperature (G/T)
figure of merit is calculated for the frequency range of each horn; it is found that system
performance down to 20° elevation is possible with a G|T degradation of less than 3 dB
at every frequency. The design presented here will allow shared but independent antenna
use by the Deep Space Network (DSN) and SETI with a minimum of operational impacts
to DSN functions and no intrusions into the DSN microwave equipment configuration.

l. Introduction

Previous work (Ref. 1) has shown that the existing DSN
34-m HA-Dec (hour angle-declination) antenna feed system is
capable of operating over the frequency ranges of 1.9 to
2.6 GHz and 7.0 to 9.4 GHz (34% of the 1-10 GHz SETI
range) with no deleterious effects due to gain degradation or
system noise temperature increase. Figure 1 shows the DSS-12
34-m antenna with the S/X reflex feed system. To achieve the
stated bandwidth, X-band wideband operation with this
antenna would require removal of the narrow band dichroic
plate. In general, gain reduction comes about because of
decreased aperture efficiency (a function of feedhorn illumi-
nation) and decreased surface efficiency (due to reflector
roughness and deviation of shape). Increased system noise
temperature results from ilumination spillover, causing
interference from the ground and atmosphere. Quadripod scat-
ter noise temperature is not a significant function of frequency

(in these systems) and thus is independent of the number of
horns or frequency ranges considered.

Work has begun to study DSN antenna performance over
the entire 1- to 10-GHz frequency range. Initially, it was
felt that the existing S/X reflex feed system could remain in
place and other horns could be added externally to the exist-
ing feedcone to fill in the 1.0-1.9, 2.6-7.0, and 9.4-10.0 GHz
frequency ranges. This possible design would share use of the
existing DSN S- and X-band feedhorns for SETI investigations;
consequently, intrusion into controlled DSN tracking con-
figurations was a recognized concern. Further thought resulted
in a decision to design a SETI feed system completely inde-
pendent of the DSN S/X feed system. This will allow a mini-
mum of impact with DSN operations, and will allow both DSN
and SETI operations, maintenance, and modification tasks to
proceed without interference. In particular, periodic modifi-
cation (for SETI use) of controlled DSN equipment configura-
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tions would be eliminated. It is anticipated that the switchover
from DSN to SETI use, or back again, would take only a mat-
ter of minutes.

To cover the 1- to 10-GHz frequency range with DSN-type
corrugated feedhorns, each operating over a 1.4:1 frequency
range, would require seven feedhorns (1.47 = 10.54). A pre-
liminary design requires all feedhorns to be scaled (by fre-
quency) from the existing DSN S- and X-band feedhorns. As
these horns have a narrow 6.25° flare (half-angle), the low
frequency horns (long wavelength) scale to enormous size.
The 1.0-1.4 GHz horn would have a length of 187 inches.
Since the existing DSS-12 feedcone has a height of 131 in., it
was decided to limit the horn design to a flare section length
not to exceed 100 in. The overall horn length will be slightly
longer than this with the addition of an orthomode polarizer.
This length limitation causes the flare angle to increase because
the horn diameter is held equal to its scaled size.

Table 1 shows the results of a series of horn performance
calculations for the low-frequency horn operating at its
nominal design frequency of 1.18 GHz (the geometric mean
of 1.0 and 1.4 GHz). Horn 1 is the DSN-type scaled horn with
a 6.25° flare angle and an aperture of 50.67 in. Shorter horn
lengths (using the same aperture) result in increased hyper-
boloid edge illumination and hence more forward spillover (as
evidenced by the decreased beam efficiency). Note also that
the far-field phase center position changes as a function of
horn length., Compared to the 187-n. horn, the 100-in. horn
shows acceptable performance. Although the edge illumina-
tion increases by 2.38 dB, the beam efficiency (fraction of
horn power intercepted by the subreflector) decreases from
0.965 to 0.925, a gain loss of only 0.18 dB.

Table 2 describes the seven horns selected to cover the 1-
to 10-GHz range. Note that neither the S-band horn (horn 3)
nor the X-band horn (horn 7) is identical to its DSN counter-
part (Ref. 1). There is no reason for any correspondence, as
the SETI system is being purposefully designed to be physi-
cally and operationally independent of the configuration-
controlled DSN system.

l. Feedcone, Feedhorn, and Subreflector
Design

The existing DSS-12 feed system operates in the reflex
mode, where the S- and X-band beams appear to emanate
from the same location (the X-band horn). This is accom-
plished by placing an ellipsoidal reflector over the S-band horn
and a dichroic plate over the X-band horn. This system is
described in Refs. 1, 2, and 3.
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The feedcone used on DSS-12 type antennas (Fig. 1) is an
asymmetrically tapered cylinder, with a base 120 in. in diam-
eter, and an oval top 86 by 120 in, The S- and X-band horns
are installed in the top of the feedcone, with their apertures

elevated approximately 2 ft above the surface.

Because of the reflex design, the hyperboloidal subreflec-
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tors on DSS-12 type antennas remain fixed and do not tilt or

rotate to access different horns as do those on 64-m antennas,
which rotate to access the different feedcones. The X-band
horn position in the S/X reflex system is the location of the
subreflector “focus”; thus the addition of seven feedhorns for
SETI use would result in a grossly asymmetric system if no
provision for subreflector movement were made.

A first simple approach to the seven-horn design (nine, if
the existing S- and X-band horns are included) might be to
add on the horns in a circle or semicircle surrounding the
existing cone (as in the 64-m L-band feed). This simple arrange-
ment is shown in Fig. 2. Note that the phase centers of these
horns are all displaced from the X-band horn position, so that
large asymmetries due to offset feeds would result. This is a
particular problem for the high-frequency (short wavelength)
horns, where displacements are large in units of wavelength.
Antenna efficiency is greatly reduced by even small amounts
of misfocus. Also, the dichroic plate over the X-band horn
might have to be tipped off, or folded away, depending on
interference with the horn patterns.

To minimize the asymmetry problem, the subreflector
would have to rotate end tip in order to access each individual
horn. The tipping portion of this motion will result in varying
and detrimental main reflector illumination, as the subreflec-
tor shape and angular tilt (in both the 34-m and 64-m designs)
are optimized for maximum illumination, with special concern
for minimum rear spillover. This “add-on™ concept might save
the cost of a new feedcone, but requires a rotatable and tilting
subreflector assembly. Because of the numerous inherent RF
performance problems in this design, including especially the
detailed question of main reflector spillover and blockage, this
concept has been rejected. Other versions of the add-on
technique can be imagined, but one or another of the above
problems will still remain.

lll. Improved Conceptual Design

The improved conceptual design involves both feedcone
and subreflector redesign. It is proposed that the feedcone be
enlarged to a 120-in. diameter for its entire height, rather than
tapered, as in the present design. In this manner, all feedhorns
can be properly contained within the cone, and excessive
waveguide runs can be eliminated. As any additional horn will




not be located at the X-band horn position, it becomes neces-
sary to rotate and index the subreflector as in the proven 64-m
system. The phase center of any added horn must be on a
circle centered on the paraboloid center line and passing
through the X-band horn. In this way, there will be no beam
position shift as different horns are accessed. Figure 3 shows
this concept with all seven horns in place in addition to the
existing S- and X-band DSN horns. Clearly, in this design,
both the dichroic plate over the X-band horn and the ellip-
soidal reflector over the S-band horn must be tipped or folded
away from the top of the cone area during SETI use. Prece-
dent for this exists (the initial 64-m reflex system was foldable
for precise gain and noise differencing tests) but it is an
unwieldly solution at best.

IV. Suggested Conceptual Design

A suggested simpler design recognizes that SETI does not
require all horns in place at a given time, and has one or two
horns located in large adapter plates (or plug-in modules) as
shown in Fig. 4. SETI plans to use only one frequency band
(horn frequency range) at a time; thus it would not be neces-
sary to have all seven horns in place simultaneously. Perhaps
several weeks or months of observation would be carried out
in each band, and then the horn and waveguide assembly
would be changed (not to exceed a 1-day job) to continue
operation in another band. Plug-in modules designed to
accommodate all horns would facilitate this exchange. The
use of two modules enables the operation of one SETI sys-
tem, with a second system in an installation, maintenance, or
checkout mode.

V. Performance Evaluation

Calculations have been carried out to determine G/ T (gain/
system noise temperature) figures of merit similar to those
determined in Ref. 1. This analysis is valid for any feed system
in which the various feedhorns can be precisely focused and in
which the resulting antenna beam does not “squint” or move
away from its normal position along the main reflector axis of
symmetry (cf. Figs. 3 and 4). G/T is defined as

naperture X nsurface

G/T ~

+T

+
atmosphere

T

+
ground Tquadripod base

The aperture efficiency, TNaperture» T€Presents the fraction of
incident power (in the sense of illumination) actually captured
by the feedhorn. The surface efficiency, Ny, .., is a function
of both surface roughness and main reflector deformation due
to gravity loading; 7,4 is the noise temperature contribu-
tion from the ground due to both forward and rear spillover;

T tmosphere 15 the atmospheric noise contribution due to the

same two causes; T\ ,qrinoq I8 the quadripod noise temperature
contribution due primarily to scattering of ground radiation.
Tiase is the non-changing baseline noise temperature due to
low-noise amplifier, cosmic background, and waveguide
contributions. Since no DSN operational systems exist over
the needed range of frequencies, it is necessary to estimate a
plausible T, value for each of the seven different horn
systems. In fact, for the purposes of this study, the baseline
noise temperature component is defined to be a constant 20 K
at all frequencies.

Note that the fotal system noise temperature includes
T,ase Plus ground, atmosphere, and quadripod contributions,
the last three varying with frequency and/or elevation angle.
The zenith atmospheric noise temperature is accepted to vary
linearly from 2 to 4 K over the 1- to 10-GHz range. Spillover
effects will result in atmospheric contributions (at zenith)
somewhat higher than these values. Quadripod noise tempera-
ture varies as a function of elevation angles only, from 2.5 K
at zenith to 6 K at 0 deg. Surface efficiency varies with fre-
quency and elevation from 0.999 at 1.0 GHz and 30-deg
elevation to 0.762 at 10.54 GHz and 90-deg elevation. These
values result from estimates of the DSS-12 type antenna mech-
anical surface tolerance due to both antenna gravity distor-
tions and surface roughness.

The highest calculated figure-of-merit value occurs at
3.24 GHz (the middle of the middle horn) and 90-deg eleva-
tion. For comparison purposes, all other figures-of-merit were
referred to this value. The components of this reference figure-
of-merit are

Naporture = 0.783
Mypctace = 0975
Torouna = 111 K

T imosphere = 274 K

T, adsipod = 250 K

T, = 2000 K

(Note: Quadripod blockage is not considered in this figure-of-
merit comparison, as it is common to all frequencies and eleva-
tion angles.) Table 3 shows the G/T figures-of-merit (dB) rela-
tive to the peak value at 3.24 GHz and 90-deg elevation. Fig-
ure 5 shows the G/T figure-of-merit values with éach horn
G/ T separately drawn.

Table 3 shows that G/T degradation less than 3 dB is avail-

able for all elevation angles greater than 20 deg. If an observing
scheme has sufficient freedom to view only portions of the sky
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at elevations greater than 30 deg (e.g., Goldstone and sources
with declinations greater than -25 deg), a less than 2-dB
degradation will be experienced. In either event, even a single-
band reflector antenna would suffer a similar G/T degrada-
tion, primarily due to atmospheric and quadripod noise con-
tributions.

VI. Conclusions

A conceptual seven-horn feed system is considered for SETI
use on a 34-m HA-Dec type antenna over the frequency range
of 1 to 10 GHz. Only one or two of the seven proposed feed

systems would be mounted at a given time, and independence
of DSN systems from the SETI systems is preserved, an aspect
considered very important to the DSN, This system shows
quite acceptable performance over the entire frequency range.
Again, it should be noted that this design considers only
antenna and feedhorn performance. The design of wideband
low-noise preamplifiers, polarizers, and orthomode compo-
nents over this frequency range has not yet been accomplished
and may require a substantial development effort. Further
studies will address this consideration and the use of beam
waveguide in a shaped dual-reflector system for wideband
SETI requirements.
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Table 1. Low-frequency corrugated horn comparison, frequency = 1.18 GHz,
aperture diameter = 50.67 In.

Hyperboloid

Flare Flare Edge Beam Phase
Horn Length, Half-Angle, Lo, o Center

. Illumination, Efficiency . i @

in. deg dB Position, in.
1 186.572 6.250 ~16.25 0.965 17.648
2 160. 7.277 -15.82 0.959 20.870
3 140. 8.304 ~15.37 0.953 22.530
4 120. 9.663 -14.75 0.942 25.428
5 100. 11.548 -13.87 0.925 29.014
6 80. 14.328 -12.57 0.896 33.407
7 60. 18.806 -10.56 0.838 38.482

4Inside horn, relative to aperture. Phase center calculated from +15.79° spread of far-field points

(the edges of the DSS-12 subreflector).

Table 2. Corrugated horns to cover the 1- to 10-GHz frequency range

Nominal

Phase Center

Frequency Design Phas'ing Diamfater of Phasing Flare Alperture Groove Position Inside
Horn Range, Frequency Section Section and Small Length, Diameter, Depth, Horn Aperture
GHz GHz Length, in. End of Flare, in. in. in. in. at Nomina.l

Frequency, in.2
i 1.00-1.40 1.18 0.0 9.803 100.000 50.67 3.080 27.418
2 1.40-1.96 1.66 0.0 6.969 100.000 36.02 2.189 14.787
3 1.96-2.74 2.32 0.0 4.986 94.917 25.78 1.566 8.244
4 2.74-3.84 3.24 0.0 3.570 67.965 18.46 1.122 5.908
5 3.84-5.38 4.55 0.0 2.542 48.397 13.14 0.799 4.197
6 5.38-7.53 6.36 0.0 1.819 34.624 9.40 0.571 2.999
7 7.53-10.54 8.91 0.0 1.298 24.715 6.71 0.408 2,143

81nside horn, relative to aperture. Phase center calculated from £16° spread of far-field points.
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Table 3.

G/T figure-of-merit, dB

Frequency Elevation Angle, deg.
Horn GH
z 0 10 20 30 40 50 60 70 80 90
1.00 -5.237 -3.194 -2.143 -1.494 -1.237 -1.104 -1.036 -1.061 -1.299 -1.358
1 1.18 ~5.040 -2.856 -1.677 -1.072 -0.811 -0.667 -0.568 -0.545 -0.580 -0.675
1.40 -5.266 -2.907 -1.696 -1.161 -0.894 -0.731 -0.614 -0.557 -0.602 -0.592
1.40 -4.821 -2.723 -1.662 -1.097 -0.845 -0.704 -0.632 ~0.639 -0.851 -0.873
2 1.66 -4.644 -2.364 -1.286 ~-0.761 -0.500 -0.346 -0.242 -0.206 -0.302 -0.285
1.96 -5.042 -2.605 -1.481 -0.980 -0.707 -0.536 -0.406 -0.337 -0.346 -0.321
1.96 -4.704 -2.502 -1.401 -0.863 -0.599 ~0.446 -0.363 -0.355 -0.520 -0.480
3 2.32 -4.539 -2.156 -1.119 -0.611 -0.341 -0.182 -0.066 -0,025 -0.088 -0.056
2.74 -5.052 -2.526 -1.455 -0.953 -0.677 -0.499 -0.366 -0.291 -0.278 -0.259
2,74 -4.871 ~2.578 -1.394 -0.828 -0.556 -0.391 -0.293 -0.266 -0.370 -0.321
4 3.24 -4.736 -2.,244 -1.169 -0.630 -0.352 -0.179 -0.054 -0.001 -0.030 -0.000
3.84 -5.330 ~2.709 -1.604 -1.079 -0.791 -0.607 -0.476 -0.404 -0.403 -0.404
3.84 -5.222 ~2.796 -1.492 -0.880 -0.577 -0.393 ~0.280 -0.227 -0.273 -0.249
5 4.55 -5.185 -2.553 -1.404 -0.830 -0.529 -0.348 -0.226 -0.165 -0.197 -0.215
5.38 -5.784 -3.007 -1.844 -1.291 -0.991 ~0.809 -0.683 -0.627 -0.652 -0.681
5.38 -5.758 -3.166 -1.793 -1.158 ~0.837 -0.644 -0.526 -0.478 -0.529 -0.571
6 6.36 -5.773 -2.966 -1.744 -1.140 -0.828 -0.647 -0.540 -0.501 ~0.580 -0.634
7.53 -6.465 -3.485 -2.222 -1.626 ~-1.307 -1.127 -1.026 -0.994 -1.074 -1.159
7.53 -6.520 -3.777 -2.318 -1.643 ~1.311 -1.135 -1.051 -1.046 -1.200 -1.295
7 8.91 -6.552 -3.500 -2.173 -1.520 -1.194 ~1.016 -0.945 -0.953 -1.104 -1.222
10.54 ~7.362 -4.984 -2.012 -1.678 -1.500 -1.441 -1.461 -1.627 ~-1.807

-2.673
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Fig. 1. DSS 12 34-m HA-Dec antenna with S/ reflex leed sysiem
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Fig. 4. New design feedcone with adapter plates
for mounting SETI feedhorns
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